The XY pyrochlore Yb₂Ti₂O₇, with pseudo spin 1/2 at the Yb³⁺ site, has been celebrated as potential host for the quantum spin ice state. The substitution of non-magnetic Ti with Pt gives Yb₂Pt₂O₇, a system with remarkably similar magnetic properties. The large nuclear gyromagnetic ratio ($\gamma_N = 9.15$ MHz/T) of ¹⁹⁵Pt makes Yb₂Pt₂O₇ an ideal material for NMR investigation of its unconventional magnetic properties. Based on the ¹⁹⁵Pt nuclear spin-lattice relaxation rate 1/T₁ and the magnetic specific heat C_P measured in a broad range of magnetic field B_{ext}, we demonstrate that the field-induced magnon gap linearly decreases with B_{ext} but additional low energy mode of spin excitations emerge below ~ 0.5 T.